Tyto stránky používají soubory cookie k uchování uživatelského nastavení, personalizaci reklam (hostitelský server webzdarma.cz) a analýze návštěvnosti. Používáním tohoto webu s tím souhlasíte.
000111000111010111
110110000111
101111
001101101110100101
001110011000
010011
 ¤ Kontakt ¤ 
 ¤ Možnosti ¤ 
 ¤ Aktualizace ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Počítadlo ¤ 
2 a 9 8 2
 ¤ Certifikace ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Galerie » Logické hádanky  100011111010110000 

Diferenciální katastofa - obtížnost 3.0 (původní obtížnost 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Obtížnost:12345678910
 ¤ TOP ¤ 
 ¤ Kalendář ¤ 
Občanský:
Církevní:
Liturgický:
 ¤ Vyhledávání ¤ 
 ¤ Biblenet ¤ 
Verš:
Zpět nahoru
Copyright © 2004-2018 Tomáš Vala
Optimalizováno pro Firefox
Mapa stránek | Mobilní verze | A+ A A-