Tyto stránky používají soubory cookie k uchování uživatelského nastavení, personalizaci reklam (hostitelský server webzdarma.cz) a analýze návštěvnosti. Používáním tohoto webu s tím souhlasíte.
010010010100010110
001001000010
100100
000101110010010000
100011001100
111101
 ¤ Kontakt ¤ 
 ¤ Možnosti ¤ 
 ¤ Aktualizace ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Počítadlo ¤ 
2 8 8 a 6
 ¤ Certifikace ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Galerie » Logické hádanky  100010110010101100 

Narozeninový paradox - obtížnost 6.0 (původní obtížnost 3)
Na oslavě jedněch narozenin se sešlo N lidí. Jak musí být N velké, aby byla více než 50% šance (pravděpodobnost), že se tam sešli dva lidé narození ve stejný měsíc a den (rok nerozhoduje)?
Řešení je 23 lidí.
Pro N lidí spočítáme, jaká je pravděpodobnost, že se tam sešli aspoň dva stejně narození lidé. Počet dní v roce označme n. Jednodušeji se nám vyjádří pravděpodobnost p, že jsou všichni narození jindy:
první: má n možností
druhý: zbývá n-1 možností
Ntý: zbývá n-N+1 možností
a tedy:
p = n/n * (n-1)/n * ... * (n-N+1)/n
Výsledná pravděpodobnost p2 opačného jevu (že je tam aspoň jedna dvojice ve stejný den) je pak:
p2 = 1-p
Když si vyjádříme hodnoty p2 pro jednotlivé N, výjde nám, pro N = 23 a n = 366 (přestupný rok) hodnota p2 = 0,5063 (něco málo přes 50%). Pro n = 365 to výjde ještě o málo víc (0,5073).
Obtížnost:12345678910
 ¤ TOP ¤ 
 ¤ Kalendář ¤ 
 ¤ Vyhledávání ¤ 
 ¤ Biblenet ¤ 
Verš:
Zpět nahoru
Copyright © 2004-2017 Tomáš Vala
Optimalizováno pro Firefox
Mapa stránek | Mobilní verze | A+ A A-