This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
100111001010101100
110111100000
010010
011000110101101010
101011001100
110010
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 0 5 6 f
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  001110100011000110 

Nekonečné zlomky - difficulty 5.6 (former difficulty 6)
Jaká je hodnota nekonečného zlomku:
1/(1 + 1/(1 + 1/(1 + ... )))
Odvoďte obecný vzorec pro výpočet hodnoty nekonečného zlomku:
n/(m + n/(m + n/(m + ... ))), kde m, n jsou přirozená čísla > 0
1/(1 + 1/(1 + 1/(1 + ... ))) = (odm(5)-1)/2
Definujme:
X = 1 + n/(m + n/(m + n/(m + ... ))) = 1 + 1/(m/n + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + 1 + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + X)
Odtud:
X2 + (m/n - 2)*X - m/n = 0
Řešení kvadratické rovnice:
X = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2
Zadefinujeme:
f(m,n) = X - 1 = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2 - 1
Budou nás zajímat pouze kladná řešení, protože koeficienty ve zlomku jsou kladné.
f(1,1) = (1 + odm(5))/2 - 1 = (odm(5) - 1)/2
f(2,1) = odm(2) - 1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2020 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-