Tyto stránky používají soubory cookie k uchování uživatelského nastavení, personalizaci reklam (hostitelský server webzdarma.cz) a analýze návštěvnosti. Používáním tohoto webu s tím souhlasíte.
111110111110100111
111000111111
100001
101010100000011111
011101010100
010100
 ¤ Kontakt ¤ 
 ¤ Možnosti ¤ 
 ¤ Aktualizace ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Počítadlo ¤ 
2 a 9 8 2
 ¤ Certifikace ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Galerie » Logické hádanky  010000010110100110 

Průnik válců - obtížnost 7.0 (původní obtížnost 7)
Mějme dva válce (dostatečně dlouhé), jejichž poloměr podstavy je stejný (např. R). Umístíme je do prostoru tak, aby byly jejich osy navzájem kolmé a protínaly se v těžišti obou válců.
Úkolem je spočítat objem tělesa tvořeného průnikem těchto válců. Nejlépe bez použití kalkulu (integrace). Archimedes to dokázal s využitím vzorců pro obsah kruhu a objem koule.
Umístíme oba válce vodorovně a budeme zkoumat vodorovné řezy průnikovým tělesem. Každý z těchto řezů je čtverec a přesně uprostřed má stranu 2R. Průnikové těleso se skládá z 8 stejných částí (různě zrcadlově převracených) - vzniknou rozdělením tělesa na jednotlivé kvadranty souřadných os. Označme si je pojmem osminka.
Vezměme pro jednoduchost pouze jedenu osminku. Místo toho, abychom počítali objem osminky, spočítáme, jaký je objem doplňku na obalové krychli o straně R (tato krychle má objem R^3).
Když budeme opět zkoumat vodorovné řezy osminkou ve výšce H, zjistíme, že tvoří opět čtverce o straně K. Jeho obsah je K^2 a z Pythagorovy věty víme, že K^2 = R^2 - H^2. Zbylá část má tedy obsah R^2 - K^2 = H^2 a to nám nápadně připomíná jiné těleso, které má obsah řezu ve výšce H roven H^2. Jedná se o jehlan s podstavou o straně R a výšce také R. Jeho objem tedy musí být roven objemu doplňkové části a tedy (R^3)/3. Objem osminky je tedy R^3 - (R^3)/3 = 2*(R^3)/3.
Celkový objem průnikového tělesa je tedy 8*2*(R^3)/3 = 16*(R^3)/3.
Ke stejnému výsledku dospějeme i tak, že průnikovému tělesu vepíšeme kouli. V každém řezu je to pak čtverec, kterému je vepsán kruh. Poměr obsahu kruhu ke čtverci je pí/4. A tedy poměr objem koule a průnikového tělesa je pí/4. Objemové těleso má tedy objem (4/pí) * (4/3)*pí*(R^3) = 16*(R^3)/3.
Obtížnost:12345678910
 ¤ TOP ¤ 
 ¤ Kalendář ¤ 
Občanský:
Církevní:
Liturgický:
 ¤ Vyhledávání ¤ 
 ¤ Biblenet ¤ 
Verš:
Zpět nahoru
Copyright © 2004-2018 Tomáš Vala
Optimalizováno pro Firefox
Mapa stránek | Mobilní verze | A+ A A-