This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
111001000001110111
011101101101
100101
000110010101011011
100001101010
001000
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
2 d 0 0 9
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  101011110000111111 

Průnik válců - difficulty 8.5 (former difficulty 7)
Mějme dva válce (dostatečně dlouhé), jejichž poloměr podstavy je stejný (např. R). Umístíme je do prostoru tak, aby byly jejich osy navzájem kolmé a protínaly se v těžišti obou válců.
Úkolem je spočítat objem tělesa tvořeného průnikem těchto válců. Nejlépe bez použití kalkulu (integrace). Archimedes to dokázal s využitím vzorců pro obsah kruhu a objem koule.
Umístíme oba válce vodorovně a budeme zkoumat vodorovné řezy průnikovým tělesem. Každý z těchto řezů je čtverec a přesně uprostřed má stranu 2R. Průnikové těleso se skládá z 8 stejných částí (různě zrcadlově převracených) - vzniknou rozdělením tělesa na jednotlivé kvadranty souřadných os. Označme si je pojmem osminka.
Vezměme pro jednoduchost pouze jedenu osminku. Místo toho, abychom počítali objem osminky, spočítáme, jaký je objem doplňku na obalové krychli o straně R (tato krychle má objem R^3).
Když budeme opět zkoumat vodorovné řezy osminkou ve výšce H, zjistíme, že tvoří opět čtverce o straně K. Jeho obsah je K^2 a z Pythagorovy věty víme, že K^2 = R^2 - H^2. Zbylá část má tedy obsah R^2 - K^2 = H^2 a to nám nápadně připomíná jiné těleso, které má obsah řezu ve výšce H roven H^2. Jedná se o jehlan s podstavou o straně R a výšce také R. Jeho objem tedy musí být roven objemu doplňkové části a tedy (R^3)/3. Objem osminky je tedy R^3 - (R^3)/3 = 2*(R^3)/3.
Celkový objem průnikového tělesa je tedy 8*2*(R^3)/3 = 16*(R^3)/3.
Ke stejnému výsledku dospějeme i tak, že průnikovému tělesu vepíšeme kouli. V každém řezu je to pak čtverec, kterému je vepsán kruh. Poměr obsahu kruhu ke čtverci je pí/4. A tedy poměr objem koule a průnikového tělesa je pí/4. Objemové těleso má tedy objem (4/pí) * (4/3)*pí*(R^3) = 16*(R^3)/3.
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2019 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-