This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
111100110110011101
110100011101
100101
111101010101000010
011000101011
101011
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 2 6 2 d
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  101010000110000100 

Tři rovnice - difficulty 4.2 (former difficulty 4)
Máme dánu soustavu tří rovnic o třech neznámých x, y, z:

x + y + z = 1
x2 + y2 + z2 = 2
x3 + y3 + z3 = 4

Čemu je roven součin x * y * z ?
Čemu je roven výraz 1/x + 1/y + 1/z ?
(x+y+z)3 = (x3+y3+z3) + 6xyz + 3xy2 + 3y2z + 3xz2 + 3yz2 + 3x2z + 3x2y
6xyz = (x+y+z)3 - (x3+y3+z3) - 3*(x2*(y+z) + y2*(x+z) + z2*(x+y)) = (x+y+z)3 - (x3+y3+z3) - 3*((x2+y2+z2)(x+y+z) - (x3+y3+z3)) = 1 - 4 - 3*(2*1 - 4) = 3
xyz = 1/2

(x+y+z)2 = (x2+y2+z2) + 2xy + 2xz + 2yz
(xy + xz + yz) = ((x+y+z)2 - (x2+y2+z2))/2 = (1 - 2)/2 = -1/2
1/x + 1/y + 1/z = (xy + xz + yz)/(xyz) = (-1/2)/(1/2) = -1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2022 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-