This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
100111111000001100
110100110101
111011
001001010100001100
011000100101
100011
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
2 f 9 e 6
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  010110001110010111 

Tři rovnice - difficulty 4.2 (former difficulty 4)
Máme dánu soustavu tří rovnic o třech neznámých x, y, z:

x + y + z = 1
x2 + y2 + z2 = 2
x3 + y3 + z3 = 4

Čemu je roven součin x * y * z ?
Čemu je roven výraz 1/x + 1/y + 1/z ?
(x+y+z)3 = (x3+y3+z3) + 6xyz + 3xy2 + 3y2z + 3xz2 + 3yz2 + 3x2z + 3x2y
6xyz = (x+y+z)3 - (x3+y3+z3) - 3*(x2*(y+z) + y2*(x+z) + z2*(x+y)) = (x+y+z)3 - (x3+y3+z3) - 3*((x2+y2+z2)(x+y+z) - (x3+y3+z3)) = 1 - 4 - 3*(2*1 - 4) = 3
xyz = 1/2

(x+y+z)2 = (x2+y2+z2) + 2xy + 2xz + 2yz
(xy + xz + yz) = ((x+y+z)2 - (x2+y2+z2))/2 = (1 - 2)/2 = -1/2
1/x + 1/y + 1/z = (xy + xz + yz)/(xyz) = (-1/2)/(1/2) = -1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2020 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-