This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
010000101111110000
001001100011
110111
011101100001000011
101010100000
101000
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
2 f c b f
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  111101111101101011 

Číselné řady - difficulty 4.3 (former difficulty 5)
1) 8723, 3872, 2387, ?
2) 1, 4, 9, 18, 35, ?
3) 23, 45, 89, 177, ?
4) 7, 5, 8, 4, 9, 3, ?
5) 11, 19, 14, 22, 17, 25, ?
6) 3, 8, 15, 24, 35, ?
7) 2, 4, 5, 10, 12, 24, 27, ?
8) 1, 3, 4, 7, 11, 18, ?
9) 99, 92, 86, 81, 77, ?
10) 0, 4, 2, 6, 4, 8, ?
11) 1, 2, 2, 4, 8, 11, 33, ?
12) 1, 2, 6, 24, 120, ?
13) 1, 2, 3, 6, 11, 20, 37, ?
14) 5, 7, 12, 19, 31, 50, ?
15) 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, ?
16) 126, 63, 190, 95, 286, 143, 430, 215, 646, 323, 970, ?
17) 4, 7, 15, 29, 59, 117, ?
18) 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, ?
19) 4, 4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, ?
Jistě naleznete i jiná zdůvoněná řešení:
1) 7238 - permutace 4 čísel, aby se neopakovaly pozice
2) 68 = 2n + n - 2
3) 353 ... an+1 = 2*an - 1
4) 10 ... liché prvky posloupnosti tvoří řadu 7,8,9,10,11,12,... sudé prvky řadu 5,4,3,2,1,0,-1,...
5) 20 ... liché prvky posloupnosti začínají 11 a rostou po 3 a sudé začínají 19 a také rostou po 3
6) 48 ... an+1 = an + 3 + 2*n
7) 54 ... střídání *2 (pevné), +1 (roste), *2, +2, *2, +3, *2, +4, *2, +5, ...
8) 29 ... an+2 = an+1 + an
9) 74 ... an+1 = an - 8 + n
10) 6 ... střídání +4 a -2
11) 37 ... sřídání +1, *1, +2, *2, +3, *3, ...
12) 720 = n!
13) 68 ... an+3=an+2+an+1+an
14) 81 ... an+2=an+1+an
15) 322 ... když je an liché, tak an+1=an*3+1 a když je sudé an+1=an/2
16) 485 ... stejný princip jako 15)
17) 235 ... an+2=an+1+2*an
18) 2 ... an = nejmenší přirozené číslo, které není dělitelem čísla n
19) 4 ... an = nejmenšímu složenému číslu "N" takovému, pro které platí "(n-1)N je kongruentní (?) n-1 (mod N)
a1: 0^4 ? 0 (mod 4)
a2: 1^4 ? 1 (mod 4)
a3: 2^341 ? 2 (mod 341)
a4: 3^6 ? 3 (mod 6)
a5: 4^4 ? 0 (mod 4) = 4 (mod 4)
...
a27: 26^9 ? 8 (mod 9) = 26 (mod 9)
a28: 27^6 ? 3 (mod 6) = 27 (mod 6)
a29: 28^4 ? 0 (mod 4) = 28 (mod 4)
(dle J.H.Conway et al.: The primary pretenders)
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2020 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-