This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
000010010010000001
111111101111
101101

» Gallery » Logical puzzles

Číselné řady - difficulty 4.3 (former difficulty 5)
1) 8723, 3872, 2387, ?
2) 1, 4, 9, 18, 35, ?
3) 23, 45, 89, 177, ?
4) 7, 5, 8, 4, 9, 3, ?
5) 11, 19, 14, 22, 17, 25, ?
6) 3, 8, 15, 24, 35, ?
7) 2, 4, 5, 10, 12, 24, 27, ?
8) 1, 3, 4, 7, 11, 18, ?
9) 99, 92, 86, 81, 77, ?
10) 0, 4, 2, 6, 4, 8, ?
11) 1, 2, 2, 4, 8, 11, 33, ?
12) 1, 2, 6, 24, 120, ?
13) 1, 2, 3, 6, 11, 20, 37, ?
14) 5, 7, 12, 19, 31, 50, ?
15) 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, ?
16) 126, 63, 190, 95, 286, 143, 430, 215, 646, 323, 970, ?
17) 4, 7, 15, 29, 59, 117, ?
18) 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, ?
19) 4, 4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, ?
Jistě naleznete i jiná zdůvoněná řešení:
1) 7238 - permutace 4 čísel, aby se neopakovaly pozice
2) 68 = 2n + n - 2
3) 353 ... an+1 = 2*an - 1
4) 10 ... liché prvky posloupnosti tvoří řadu 7,8,9,10,11,12,... sudé prvky řadu 5,4,3,2,1,0,-1,...
5) 20 ... liché prvky posloupnosti začínají 11 a rostou po 3 a sudé začínají 19 a také rostou po 3
6) 48 ... an+1 = an + 3 + 2*n
7) 54 ... střídání *2 (pevné), +1 (roste), *2, +2, *2, +3, *2, +4, *2, +5, ...
8) 29 ... an+2 = an+1 + an
9) 74 ... an+1 = an - 8 + n
10) 6 ... střídání +4 a -2
11) 37 ... sřídání +1, *1, +2, *2, +3, *3, ...
12) 720 = n!
13) 68 ... an+3=an+2+an+1+an
14) 81 ... an+2=an+1+an
15) 322 ... když je an liché, tak an+1=an*3+1 a když je sudé an+1=an/2
16) 485 ... stejný princip jako 15)
17) 235 ... an+2=an+1+2*an
18) 2 ... an = nejmenší přirozené číslo, které není dělitelem čísla n
19) 4 ... an = nejmenšímu složenému číslu "N" takovému, pro které platí "(n-1)N je kongruentní (?) n-1 (mod N)
a1: 0^4 ? 0 (mod 4)
a2: 1^4 ? 1 (mod 4)
a3: 2^341 ? 2 (mod 341)
a4: 3^6 ? 3 (mod 6)
a5: 4^4 ? 0 (mod 4) = 4 (mod 4)
...
a27: 26^9 ? 8 (mod 9) = 26 (mod 9)
a28: 27^6 ? 3 (mod 6) = 27 (mod 6)
a29: 28^4 ? 0 (mod 4) = 28 (mod 4)
(dle J.H.Conway et al.: The primary pretenders)
Difficulty:12345678910
 ¤ Contact ¤ 
 ¤ Actualization ¤ 
 ¤ HEX Counter ¤ 
2 f 9 b 9
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0
Back to top
Copyright © 2004-2020 Tomáš Vala
Optimized for Firefox
Website map | PC version | A+ A A-