This website uses cookies to ensure you get the best experience on the website.
100010110100100000
000100001010
111111
110001000101110000
101010100010
111011
 ¤ קונטקט ¤ 
 ¤ אפשרויות ¤ 
 ¤ עדכון ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX מונה ¤ 
2 f 0 8 e
 ¤ תעודה ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» גלריה » חידות לוגיות  011101100010010101 

Diferenciální katastofa - difficulty 3.0 (former difficulty 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Difficulty:12345678910
 ¤ עשירייה ¤ 
 ¤ חיפוש ¤ 
 ¤ Biblenet ¤ 
פסוק:
חזרה למעלה
Copyright © 2004-2020 Tomáš Vala
אופטימלי עבור Firefox
מפת האתר | גירסה ניידת | A+ A A-