This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
010010101111010100
101111110100
111110
011100111100000111
001101000110
001110
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
2 e 6 a 3
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  110010010010111110 

Diferenciální katastofa - difficulty 3.0 (former difficulty 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2019 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-