Tyto stránky používají soubory cookie k uchování uživatelského nastavení, personalizaci reklam (hostitelský server webzdarma.cz) a analýze návštěvnosti. Používáním tohoto webu s tím souhlasíte.
111111001101001011
000111001000
010101
110010011111011111
010010010001
010000
 ¤ Kontakt ¤ 
 ¤ Možnosti ¤ 
 ¤ Aktualizace ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Počítadlo ¤ 
3 1 0 4 1
 ¤ Certifikace ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Galerie » Logické hádanky  111000100000111101 

Diferenciální katastofa - obtížnost 4.5 (původní obtížnost 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Obtížnost:12345678910
 ¤ TOP ¤ 
 ¤ Kalendář ¤ 
Občanský:
Církevní:
Liturgický:
 ¤ Vyhledávání ¤ 
 ¤ Biblenet ¤ 
Verš:
Zpět nahoru
Copyright © 2004-2021 Tomáš Vala
Optimalizováno pro Firefox
Mapa stránek | Mobilní verze | A+ A A-