This website uses cookies to ensure you get the best experience on the website.
000001000000111110
000110101110
011101

» גלריה » חידות לוגיות

Diferenciální katastofa - difficulty 3.0 (former difficulty 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Difficulty:12345678910
 ¤ קונטקט ¤ 
 ¤ עדכון ¤ 
 ¤ HEX מונה ¤ 
3 0 4 8 7
 ¤ חיפוש ¤ 
 ¤ Biblenet ¤ 
פסוק:
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ תעודה ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0
חזרה למעלה
Copyright © 2004-2020 Tomáš Vala
אופטימלי עבור Firefox
מפת האתר | גירסה PC | A+ A A-