Tyto stránky používají soubory cookie k uchování uživatelského nastavení, personalizaci reklam (hostitelský server webzdarma.cz) a analýze návštěvnosti. Používáním tohoto webu s tím souhlasíte.
001010011011101001
111110010111
011101
011010110001010011
011101011011
111101
 ¤ Kontakt ¤ 
 ¤ Možnosti ¤ 
 ¤ Aktualizace ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Počítadlo ¤ 
3 0 4 9 c
 ¤ Certifikace ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Galerie » Logické hádanky  000001001111011001 

Diferenciální katastofa - obtížnost 3.0 (původní obtížnost 3)
Každý ze střední školy ví, že derivace (x2)' je 2x. Uvažme ale následující:
x2 = x + x + ... + x (celkem x-krát)
a tedy
(x2)' = (x + x + ... + x)' = (x)' + (x)' + ... + (x)' = 1 + 1 + ... + 1 = x
Kde je problém? Respektive kde byl porušen matematický kalkulus?
Omezme se pouze na přirozená čísla, protože pro reálná čísla nelze mocninu vyjádřit sumou.
Problém je, že druhá rovnost neplatí. Přepišme jiným způsobem:
f(x) = x2 = suma(i=1..x)(x)
a
f(x)' = (suma(i=1..x)(x))' nerovná se suma(i=1..x)(1)
ale
(suma(i=1..x)(x))' = suma(i=1..2x)(1) = 2x
protože derivovaná funkce proměnné x obsahuje proměnnou také v indexu sumy a ten nebyl v prvním případě řádně zderivován. Pokud by se jednalo o sumu s konstatním počtem členů, bylo by vše v pohodě.
Obtížnost:12345678910
 ¤ TOP ¤ 
 ¤ Kalendář ¤ 
 ¤ Vyhledávání ¤ 
 ¤ Biblenet ¤ 
Verš:
Zpět nahoru
Copyright © 2004-2020 Tomáš Vala
Optimalizováno pro Firefox
Mapa stránek | Mobilní verze | A+ A A-