This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
000001101110101001
110010000010
000001
001000110001010011
100001011110
001101
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 4 2 d 7
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  111100011111111101 

Eulerovo a Ludolfovo číslo - difficulty 7.1 (former difficulty 6)
Bez použití výpočetní techniky a přibližného "ručního" umocňování rozhodněte co je větší:
e nebo píe
Dokažte.
e > píe
Vezměme funkci f(x) = ln(x)/x. Získáme její derivaci f'(x) = (1-ln(x))/(x*x). Ta je nulová pro ln(x) = 1 a to je pro x = e. V bodě e nabývá funkce f(x) své maximum, protože např f(1) = 0 < f(e) = 1/e. A tudíž:
f(e) > f(pí)
ln(e)/e > ln(pí)/pí
pí*ln(e) > e*ln(pí) a protože e,pí > 1
e > píe
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2023 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-