This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
010101001000000101
100100001110
000000
001111011010000100
000110100011
011001
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 5 6 d b
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  111101010011100010 

Házení jehel - difficulty 4.8 (former difficulty 5)
Zatímco se Amerika vzpamatovávala z občanské války, kapitán Fox přišel na zajímavý experiment. Byl schopen určit hodnotu čísla pí tím, že házel několik jehel na desku stolu, na které byly nakresleny rovnoběžné čáry.
Abyste odhalili, kde v tomto experimentu figuruje číslo pí, vyzkoušejte vyřešit následující úlohu. Na povrchu desky stolu jsou nakresleny rovnoběžné čáry ve vzdálenosti K. Předpokládejme, že na stůl hodíme náhodně jehlu délky L.
S jakou pravděpodobností protne některou z čar na stole? Jak to bude vypadat s počtem protnutí po několika hodech?
Poznámka: Hádanka je podložena skutečnou událostí. Problém byl zformulován a vyřešen v roce 1777 francouzským přírodovědcem Buffonem. Zahájil tak éru geometrické pravděpodobnosti. Tohoto pozorování využívají také výpočty založené na metodě Monte-Carlo.
Poznámka: K vyřešení tohoto problému budete potřebovat matematické znalosti.
Poznámka: Uvažujte pouze pro D >= L. Opačný případ je komplikovaný.
Nejprve uvažme jednoduchý případ pro D=1 a L=1. Každý dopad jehly můžeme popsat pomocí dvou proměnných - A jako úhel, který svírá jehla s vodorovnými čárami (0-pí) a B jako vzdálenost středu jehly od nejbližší čáry (0-1/2).
Jehla protne čáru právě tehdy když B<=(1/2)sin(A).
Pro jednotlivé úhly A si vyneseme hodnotu do grafu. Pravděpodobnost protnutí čáry je tedy plocha pod grafem dělená celkovou plochou. Plochu pod grafem spočítáme pomocí integrálu (1/2)sin(A) od 0 do pí a výjde nám 1. Celková plocha obdélníku je (1/2)pí = pí/2 A tedy pravděpodobnost zásahu je 1/(pí/2) = 2/pí.
Odtud dostáváme, že pí je přibližně rovno 2*(počet hodů)/(počet zásahů).
V obecném případě pro D>=L lze pravděpodobnost zásahu vyjádřit jako (2*L)/(K*pí).
Opačný případ je příliš komplikovaný.
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2023 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-