This website uses cookies to ensure you get the best experience on the website.
101101100100111000
100001011001
001100
110110000111100010
110001101100
011000
 ¤ קונטקט ¤ 
 ¤ אפשרויות ¤ 
 ¤ עדכון ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX מונה ¤ 
3 5 6 6 c
 ¤ תעודה ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» גלריה » חידות לוגיות  110100110011110000 

Lomená čára - difficulty 6.4 (former difficulty 7)
Mějme pravoúhlý trojúhelník ABC. Z vrcholu A vede do vrcholu B lomená čára, jejíž úseky jsou kolmé střídavě k odvěsně BC a k přeponě AB. Celková délka lomené čáry je 260.
Delší lomená čára
Z vrcholu B vede do vrcholu A lomená čára, jejíž úseky jsou kolmé střídavě k odvěsně AC a k přeponě AB. Celková délka lomené čáry je 78.
Kratší lomená čára
Jaké jsou rozměry všech tří stran trojúhelníku?
Pro pravoúhlý trojúhelník platí: a*a = c*ca, kde ca je průmět strany a do přepony c. Tedy výška na c dělí přeponu c na ca a cb.
ca/cb = (a*a)/(b*b) a v tomto poměru je rozdělena c. Takže když se vydáme z bodu A k C a potom k přeponě, urazíme vzdálenost b + vc a dostáváme menší trojúhelník, jehož strany se zmenšili (a*a)/((a*a)+(b*b)) krát.
Z věty o výškách:
va:vb:vc je ve stejném poměru jako (1/a):(1/b):(1/c)
dostáváme vc = (a*b)/c.
Celokovou délku lomené čáry z A do B vyjádříme jako nekonečnou sumu:
suma(i=0..nekonečno) (b+vc)*((a*a)/((a*a)+(b*b)))i = (b+vc)*suma(i=0..nekonečno) ((a*a)/((a*a)+(b*b)))i = (b+(a*b)/c)*suma(i=0..nekonečno) ((a*a)/((a*a)+(b*b)))i
Nekonečná suma je klasická geometrická posloupnost, jejíž součet je 1/(1-q), kde q = (a*a)/((a*a)+(b*b)) < 1.
Délka lomené čáry z A do B je po úpravách (b*c)/(c-a) = 260. A analogicky pro lomenou čáru z B do A (a*c)/(c-b) = 78. Společně s c*c = a*a + b*b máme 3 rovnice o 3 neznámých.
Pomocí různých úprav se mi podařilo zjistit, že 0 < 0,3a < b < a < 78. Předpokládal jsem, že řešení je celočíselné a pomocí počítače jsem dospěl k řešení a = 48, b = 20, c = 52.
Věřím, že to lze řešit elegantněji.
Difficulty:12345678910
 ¤ עשירייה ¤ 
 ¤ חיפוש ¤ 
 ¤ Biblenet ¤ 
פסוק:
חזרה למעלה
Copyright © 2004-2023 Tomáš Vala
אופטימלי עבור Firefox
מפת האתר | גירסה ניידת | A+ A A-