This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
100001110000111111
100110001111
001010
100110001101001100
001110111010
111110
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 2 8 1 9
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  111101111000101010 

Nekonečné zlomky - difficulty 5.6 (former difficulty 6)
Jaká je hodnota nekonečného zlomku:
1/(1 + 1/(1 + 1/(1 + ... )))
Odvoďte obecný vzorec pro výpočet hodnoty nekonečného zlomku:
n/(m + n/(m + n/(m + ... ))), kde m, n jsou přirozená čísla > 0
1/(1 + 1/(1 + 1/(1 + ... ))) = (odm(5)-1)/2
Definujme:
X = 1 + n/(m + n/(m + n/(m + ... ))) = 1 + 1/(m/n + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + 1 + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + X)
Odtud:
X2 + (m/n - 2)*X - m/n = 0
Řešení kvadratické rovnice:
X = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2
Zadefinujeme:
f(m,n) = X - 1 = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2 - 1
Budou nás zajímat pouze kladná řešení, protože koeficienty ve zlomku jsou kladné.
f(1,1) = (1 + odm(5))/2 - 1 = (odm(5) - 1)/2
f(2,1) = odm(2) - 1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2022 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-