This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
011010010111111110
010100010010
101001
001100010111011010
011100110101
101000
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 4 2 c 3
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  100000110100111111 

Nekonečné zlomky - difficulty 5.6 (former difficulty 6)
Jaká je hodnota nekonečného zlomku:
1/(1 + 1/(1 + 1/(1 + ... )))
Odvoďte obecný vzorec pro výpočet hodnoty nekonečného zlomku:
n/(m + n/(m + n/(m + ... ))), kde m, n jsou přirozená čísla > 0
1/(1 + 1/(1 + 1/(1 + ... ))) = (odm(5)-1)/2
Definujme:
X = 1 + n/(m + n/(m + n/(m + ... ))) = 1 + 1/(m/n + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + 1 + 1/(m/n + 1/(m/n + ... ))) = 1 + 1/((m/n - 1) + X)
Odtud:
X2 + (m/n - 2)*X - m/n = 0
Řešení kvadratické rovnice:
X = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2
Zadefinujeme:
f(m,n) = X - 1 = (-(m/n - 2) +- odm((m/n - 2) + 4*m/n))/2 - 1
Budou nás zajímat pouze kladná řešení, protože koeficienty ve zlomku jsou kladné.
f(1,1) = (1 + odm(5))/2 - 1 = (odm(5) - 1)/2
f(2,1) = odm(2) - 1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2023 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-