This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
000010001011111111
110110010010
100010
011000001110101101
100000010101
011111
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 4 2 c 5
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  011011010000001111 

Tři rovnice - difficulty 4.2 (former difficulty 4)
Máme dánu soustavu tří rovnic o třech neznámých x, y, z:

x + y + z = 1
x2 + y2 + z2 = 2
x3 + y3 + z3 = 4

Čemu je roven součin x * y * z ?
Čemu je roven výraz 1/x + 1/y + 1/z ?
(x+y+z)3 = (x3+y3+z3) + 6xyz + 3xy2 + 3y2z + 3xz2 + 3yz2 + 3x2z + 3x2y
6xyz = (x+y+z)3 - (x3+y3+z3) - 3*(x2*(y+z) + y2*(x+z) + z2*(x+y)) = (x+y+z)3 - (x3+y3+z3) - 3*((x2+y2+z2)(x+y+z) - (x3+y3+z3)) = 1 - 4 - 3*(2*1 - 4) = 3
xyz = 1/2

(x+y+z)2 = (x2+y2+z2) + 2xy + 2xz + 2yz
(xy + xz + yz) = ((x+y+z)2 - (x2+y2+z2))/2 = (1 - 2)/2 = -1/2
1/x + 1/y + 1/z = (xy + xz + yz)/(xyz) = (-1/2)/(1/2) = -1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2023 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-