This website uses cookies to store your personal settings, to personalize advertisements (by hosting webzdarma.cz) and to analyze visit rate. By using this web you agree with it.
000111110001101110
001101101011
110001
000011101111101011
110010011000
000111
 ¤ Contact ¤ 
 ¤ Options ¤ 
 ¤ Actualization ¤ 
 ¤ Stop potratům ¤ 
Rychlá řešení dlouho bolí
Čekáte-li nečekané dítě
 ¤ HEX Counter ¤ 
3 0 b d 9
 ¤ Certificate ¤ 
Valid HTML 4.01 Valid CSS Valid RSS 2.0

» Gallery » Logical puzzles  001010110000111011 

Tři rovnice - difficulty 4.2 (former difficulty 4)
Máme dánu soustavu tří rovnic o třech neznámých x, y, z:

x + y + z = 1
x2 + y2 + z2 = 2
x3 + y3 + z3 = 4

Čemu je roven součin x * y * z ?
Čemu je roven výraz 1/x + 1/y + 1/z ?
(x+y+z)3 = (x3+y3+z3) + 6xyz + 3xy2 + 3y2z + 3xz2 + 3yz2 + 3x2z + 3x2y
6xyz = (x+y+z)3 - (x3+y3+z3) - 3*(x2*(y+z) + y2*(x+z) + z2*(x+y)) = (x+y+z)3 - (x3+y3+z3) - 3*((x2+y2+z2)(x+y+z) - (x3+y3+z3)) = 1 - 4 - 3*(2*1 - 4) = 3
xyz = 1/2

(x+y+z)2 = (x2+y2+z2) + 2xy + 2xz + 2yz
(xy + xz + yz) = ((x+y+z)2 - (x2+y2+z2))/2 = (1 - 2)/2 = -1/2
1/x + 1/y + 1/z = (xy + xz + yz)/(xyz) = (-1/2)/(1/2) = -1
Difficulty:12345678910
 ¤ TOP ¤ 
 ¤ Searching ¤ 
 ¤ Biblenet ¤ 
Verse:
Back to top
Copyright © 2004-2020 Tomáš Vala
Optimized for Firefox
Website map | Mobile version | A+ A A-